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About me 

 
•  Background: experimental guy in grad school (LSCM, drug 

delivery) – I seem to have become a theoretical chemist. I’m as 
confused as anyone regarding how that happened. 

•  Argonne National Labs / University of Chicago 

•  Talk is about a side project I’ve been working on amongst my 
usual day-to-day activities; it’s at an early stage! 

•  This is a via a PRAC sub-award 



Molecular dynamics 
MD (classical) numerically integrates molecular equations of motion: 

 

F = ma 
 

•  One or more atoms, linked by springs 

•  Typically, also special springs to maintain structure (angles 
formed between 3 atoms etc) 

•  Interactions between molecules are distance dependent (get 
weaker with distance) 

•  “True” atomic level-of-detail is computationally expensive! 



“Coarse graining” (CG) 

Make the model simpler, 
while maintaining the 
essential behaviours! 

Atomic model CG model 



Implicit solvent for large scale ultra-CG: introduces large, dynamic 
areas of low particle density: 

•  Load balancing: MD simulation proceeds at pace 
of slowest node 

•  Memory requirements: memory needed 
even for empty regions of simulation 

CG model

Split work over 1 .. N 
compute nodes
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2
N...

Synchronized update 
of positions/velocities

Final results

1Tom Goddard 2009, UCSF 

HIV capsid1 Ultra-CG model 

CG-MD problems 



A new MD code for multiscale CG: 
 

•  Dynamic sparse data representations 
(removes memory barriers for very large systems) 
 
•  Load balancing via Hilbert space filling curves 
 (better use of supercomputing resources) 
 

End goal: enable highly dynamic CG-MD simulations 
at a cellular scale! 

CG-MD problems 



Two fundamentally different approaches vs standard MD: 
 

•  No global bonding topology – topology is local and 
implicit, allows significant dynamic runtime 
changes (add/remove/modify molecules etc) 

•  Reduced “link cell” memory requirements 

“Sparse” data 



1M CG lipids = ~240 megabytes of disk space in LAMMPS for bonding 
topology*: but the same information is repeated for all lipids! 

 
New CG code needs 364 bytes. Always. One single “template” lipid 

structure, local topology calculated dynamically 

*4 bonds + 3 angles 

x 106 =   … 

“Sparse” data 
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“Link cell” algorithm used behind the scenes in MD – fast 
calculation of nonbonded interactions, but … 

System Divide into cells of size rcut 
Linked list of atoms 
in each “link cell” 

“Sparse” data 
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… conventional link cell algorithm: 
red cells require memory, even 
when empty! 

CG-MD “sparse” link cells: green 
region requires no memory if 
empty! 

“Sparse” data 
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Trivial example: single particle in large volume uses huge 
amounts of memory – yet the simulation is basically empty! 
 
New CG code is much better behaved. 

“Sparse” data 



CG model

Split work over 1 .. N 
compute nodes
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of positions/velocities
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Load balancing 



The space filling Hilbert curve 

Useful properties: 
•  Space filling (high resolution where needed) 
•  Dynamic generation (no precalculation) 
•  Locality (adjacent SFC “indices” also local 

in the original 2D/3D Cartesian space) 

1st order 2nd order 3rd order 

Load balancing 



Load balancing 



Naïve, uniform spatial decomposition Hilbert curve spatial decomposition 

Example: 16 particle simulation run with four CPUs: 

CG model

Split work over 1 .. N 
compute nodes
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Load balancing 



Conventional: easy! We have up, 
down, left, right … etc 

Hilbert curve: Irregular, boundaries 
between domains not simple 

Who do we need to talk to? 

Load balancing 



Who do we need to talk to? MPI_Allreduce etc slow. 

Load balancing 

MPI’s Remote Memory Access (RMA) to the rescue! 
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… or maybe not. I used DMAPP! 

Load balancing 
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Blue Waters: 4096 compute nodes

DMAPP RMA MPI RMA MPI_Barrier



1 μm x 1 μm planar bilayer 
at y = 0

125 nm bilayer vesicle at (2500, 2500, 0)

125 nm bilayer vesicle 
at (-2500, 725, 0)

{5 CG beads
4 bonds
3 angles

Example test system 

Quite small (~15M particles), 
extremely heterogeneous density 



Example test system 

128, 256, … 4096 compute nodes with 1, 2, 4, 8, 16 
ranks per node. Why does it stop scaling? 

238 
particles per 
rank, ~3 ms 

per MD 
timestep 



Example test system 

Repeat force calculation x5 at each timestep: different 
scaling characteristics! It’s not the load balancer! 

119 
particles per 
rank, ~6 ms 

per MD 
timestep 



Example test system 

Not simply the same graph shifted up/down; so what’s 
the problem? It’s not due to an MPI collective! 



Example test system 

Problem is MPI’s asynchronous point-to-point calls 
(irecv, isend) – they can’t keep up! DMAPP again? 



Summary 
 

•  Designed & implemented a custom MD code for large-scale, very 
dynamic CG simulations: 
•  Very memory efficient 
•  Load balances well 
•  “Simple” & relatively friendly; < 5K lines of C++ with vanilla 

MPI (except for a few lines of DMAPP RMA code) 

•  Performance is very promising, despite unoptimised state 



Thanks to … 
 

•  NSF 
•  Prof. Greg Voth & the group 
•  Blue Waters staff, particularly: 

•  Robert Brunner (long-suffering point-of-
contact) 

•  Kalyana Chadalavada 

•  jgrime@uchicago.edu - comments and 
advice are very welcome! 


