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SRS About me vy

Background: experimental guy in grad school (LSCM, drug
delivery) — | seem to have become a theoretical chemist. I'm as
confused as anyone regarding how that happened.

Argonne National Labs / University of Chicago

Talk is about a side project I've been working on amongst my
usual day-to-day activities; it's at an early stage!

This is a via a PRAC sub-award
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= aiicias  Molecular dynamics 4%

MD (classical) numerically integrates molecular equations of motion:

F=ma
« One or more atoms, linked by springs

« Typically, also special springs to maintain structure (angles
formed between 3 atoms etc)

 Interactions between molecules are distance dependent (get
weaker with distance)

« “True” atomic level-of-detail is computationally expensive!
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2 ciicaco “Coarse graining” (CG) 48
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Make the model simpler,
while maintaining the
essential behaviours!
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Atomic model CG model
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aicies CG-MD problems &%

Implicit solvent for large scale ultra-CG: introduces large, dynamic
areas of low particle density:

CG model
» Load balancing: MD simulation proceeds at pace Spmworktvem —
of slowest node compute nodes

>
i :
>
‘ l
Synchronized update
of positions/velocities

Final results

HIV capsid’ Ultra-CG model
 Memory requirements. memory needed
even for empty regions of simulation S -
Pty red PN ST reoy

"Tom Goddard 2009, UCSF fand STIMULATIOIT{



= anicacs . CG-MD problems 48

A new MD code for multiscale CG:

 Dynamic sparse data representations
(removes memory barriers for very large systems)

* Load balancing via Hilbert space filling curves
(better use of supercomputing resources)

End goal: enable highly dynamic CG-MD simulations
at a cellular scale!
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B CHICAES "Sparse” data o8

Two fundamentally different approaches vs standard MD:
* No global bonding topology — topology is local and
implicit, allows significant dynamic runtime
changes (add/remove/modify molecules etc)

* Reduced “link cell” memory requirements
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B | SHIEHES "Sparse” data ol

x 106 =

1M CG lipids = ~240 megabytes of disk space in LAMMPS for bonding
topology™: but the same information is repeated for all lipids!

New CG code needs 364 bytes. Always. One single “template” lipid
structure, local topology calculated dynamically
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CHICAGS “Sparse” data Ks¥
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System Divide into cells of size r_,, Linked list of atoms

in each “link cell”

“Link cell” algorithm used behind the scenes in MD — fast
calculation of nonbonded interactions, but ...
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CHICAGS “Sparse” data Ks¥

mn.. ... conventional link cell algorithm:
.: red cells require memory, even
HE -

CG-MD “sparse” link cells: green |
region requires no memory if
empty!
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CHICAGS “Sparse” data Ks¥

Single particle simulation, ry ;= 1.2 nm
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Trivial example: single particle in large volume uses huge
amounts of memory — yet the simulation is basically empty!
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CHICAGO Load balancing o,

‘ CG model | ‘ CG model |

Split work over 1 . Split work over 1 .
compute nodes compute nodes
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Synchronized update
of positions/velocities

‘ Final results |

TII

Synchronized update
of positions/velocities

‘ Final results |
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The space filling Hilbert curve
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1st order 2nd order 3rd order

Useful properties:
« Space filling (high resolution where needed)
 Dynamic generation (no precalculation)

« Locality (adjacent SFC “indices” also local WIS cenrr o
in the original 2D/3D Cartesian space) % AL WoiTisenie meony
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g | s Load balancing &

Example: 16 particle simulation run with four CPUs:

CG model

| CG model

Split work over 1 .. N @

v

Split work over 1 .. N
compute nodes

— |

| IS 20| e

Synchronized update

compute nodes

of positions/velocities

N f?;ﬁ?ﬁ%"é?f&éﬂ?ﬁéi @, O - d SN SR S I I )
* O O . I ] | n : ‘ I Final results |
O Q|

Naive, uniform spatial decomposition Hilbert curve spatial decomposition
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Who do we need to talk to?

h. 1
Conventional: easy! We have up, Hilbert curve: Irregular, boundaries
down, left, right ... etc between domains not simple

Rsr
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Who do we need to talk to? MPI_Allreduce etc slow.

adl L~

MPI's Remote Memory Access (RMA) to the rescue!
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CHICAGS Load balancing o,

Blue Waters: 4096 compute nodes

Time /s
o o
AN w

107 | . L
E I F— 1 : :
10'6 | | | | | |
1 2 4 8 16 31
MPI ranks
DMAPP RMA —— MPI RMA MPI_Barrier ——
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2 ciicacs  Example test system 4%

. 125 nm bilayer vesicle at (2500, 2500, 0)

: 125 nm bilayer vesicle
' at(-2500, 725, 0) @

O

* 1 um x 1 um planar bilayer
' aty=0

T
T
rxte |

Quite small (~15M particles),
extremely heterogeneous density %p;-gj;a
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2 ciicacs  Example test system 4%

Scaling Scaling

ideal
[e)

238
particles per

rank, ~3 ms
|_~ per MD
9 timestep
100 2 I3 I4 I5 100 2 I3 I4 I5
10 10 10 10 10 10 10 10
MPI ranks MPI ranks

128, 256, ... 4096 compute nodes with 1, 2, 4, 8, 16
ranks per node. Why does it stop scaling?

EN

CENTER for
MULTISCALE THEORY
and SIMULATION




2 ciicacs  Example test system 4%

Scaling (x5) Scaling (x5)
104
119
107 N i particles per
10 | \ I rank, ~6 ms
.~ perMD
timestep
100 2 |3 |4 |5 100 2 I3 I4 I5
10 10 10 10 10 10 10 10
MPI ranks MPI ranks

Repeat force calculation x5 at each timestep: different
scaling characteristics! It’s not the load balancer!
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Scaling

10* ——————

103 3

N\
AN

102

Time /s
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10°

MPI ranks

103 10%

10°

Not simply the same graph shifted up/down; so what’s
the problem? It’s not due to an MPI collective!
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2 ciicacs  Example test system 4%

4096 nodes
-3
4x10 Nonbonded
Async comms ———

3x10° |
wn
_Gg’ 2x 103 t
|_

1x10° | // —

12 4 8 16
N

ranks

Problem is MPI's asynchronous point-to-point calls
(irecv, isend) — they can’'t keep up! DMAPP again?
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TEstitreets Summary oy

* Designed & implemented a custom MD code for large-scale, very
dynamic CG simulations:
* Very memory efficient
* Load balances well

« “Simple” & relatively friendly; < 5K lines of C++ with vanilla
MPI (except for a few lines of DMAPP RMA code)

« Performance is very promising, despite unoptimised state
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AP T Thanks to ... ¥

 NSF
* Prof. Greg Voth & the group
* Blue Waters staff, particularly:
* Robert Brunner (long-suffering point-of-
contact)
« Kalyana Chadalavada

* jgrime@uchicago.edu - comments and
advice are very welcome!




