
Petascale Multiscale Simulations of Biomolecular
Systems

John Grime
Voth Group

Argonne National Laboratory / University of Chicago

About me

•  Background: experimental guy in grad school (LSCM, drug

delivery) – I seem to have become a theoretical chemist. I’m as
confused as anyone regarding how that happened.

•  Argonne National Labs / University of Chicago

•  Talk is about a side project I’ve been working on amongst my
usual day-to-day activities; it’s at an early stage!

•  This is a via a PRAC sub-award

Molecular dynamics
MD (classical) numerically integrates molecular equations of motion:

F = ma

•  One or more atoms, linked by springs

•  Typically, also special springs to maintain structure (angles
formed between 3 atoms etc)

•  Interactions between molecules are distance dependent (get
weaker with distance)

•  “True” atomic level-of-detail is computationally expensive!

“Coarse graining” (CG)

Make the model simpler,
while maintaining the
essential behaviours!

Atomic model CG model

Implicit solvent for large scale ultra-CG: introduces large, dynamic
areas of low particle density:

•  Load balancing: MD simulation proceeds at pace
of slowest node

•  Memory requirements: memory needed
even for empty regions of simulation

CG model

Split work over 1 .. N
compute nodes

1

2
N...

Synchronized update
of positions/velocities

Final results

1Tom Goddard 2009, UCSF

HIV capsid1 Ultra-CG model

CG-MD problems

A new MD code for multiscale CG:

•  Dynamic sparse data representations
(removes memory barriers for very large systems)

•  Load balancing via Hilbert space filling curves
 (better use of supercomputing resources)

End goal: enable highly dynamic CG-MD simulations
at a cellular scale!

CG-MD problems

Two fundamentally different approaches vs standard MD:

•  No global bonding topology – topology is local and
implicit, allows significant dynamic runtime
changes (add/remove/modify molecules etc)

•  Reduced “link cell” memory requirements

“Sparse” data

1M CG lipids = ~240 megabytes of disk space in LAMMPS for bonding
topology*: but the same information is repeated for all lipids!

New CG code needs 364 bytes. Always. One single “template” lipid

structure, local topology calculated dynamically

*4 bonds + 3 angles

x 106 = …

“Sparse” data

1

2
3

4

567

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1

2
3

4

567

rcut

1

2

3

4

5

2

6

7

5

6

1

2
6

5

“Link cell” algorithm used behind the scenes in MD – fast
calculation of nonbonded interactions, but …

System Divide into cells of size rcut
Linked list of atoms
in each “link cell”

“Sparse” data

1

2
3

4

567

1

2
3

4

567

… conventional link cell algorithm:
red cells require memory, even
when empty!

CG-MD “sparse” link cells: green
region requires no memory if
empty!

“Sparse” data

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
 /

G
B

L / µm

Single particle simulation, rcut = 1.2 nm

LAMMPS
CG-Engine

 0
 10
 20
 30

 0 25 50 75 100

M
 /

M
B

L / nm

Trivial example: single particle in large volume uses huge
amounts of memory – yet the simulation is basically empty!

New CG code is much better behaved.

“Sparse” data

CG model

Split work over 1 .. N
compute nodes

1 2 N...

Synchronized update
of positions/velocities

Final results

CG model

Split work over 1 .. N
compute nodes

1

2
N...

Synchronized update
of positions/velocities

Final results

Load balancing

The space filling Hilbert curve

Useful properties:
•  Space filling (high resolution where needed)
•  Dynamic generation (no precalculation)
•  Locality (adjacent SFC “indices” also local

in the original 2D/3D Cartesian space)

1st order 2nd order 3rd order

Load balancing

Load balancing

Naïve, uniform spatial decomposition Hilbert curve spatial decomposition

Example: 16 particle simulation run with four CPUs:

CG model

Split work over 1 .. N
compute nodes

1

2
N...

Synchronized update
of positions/velocities

Final results

CG model

Split work over 1 .. N
compute nodes

1 2 N...

Synchronized update
of positions/velocities

Final results

Load balancing

Conventional: easy! We have up,
down, left, right … etc

Hilbert curve: Irregular, boundaries
between domains not simple

Who do we need to talk to?

Load balancing

Who do we need to talk to? MPI_Allreduce etc slow.

Load balancing

MPI’s Remote Memory Access (RMA) to the rescue!

 R2
0

1

0

1

R1

R3

… or maybe not. I used DMAPP!

Load balancing

10-6

10-5

10-4

10-3

10-2

10-1

1 2 4 8 16 31

Ti
m

e
/ s

MPI ranks

Blue Waters: 4096 compute nodes

DMAPP RMA MPI RMA MPI_Barrier

1 μm x 1 μm planar bilayer
at y = 0

125 nm bilayer vesicle at (2500, 2500, 0)

125 nm bilayer vesicle
at (-2500, 725, 0)

{5 CG beads
4 bonds
3 angles

Example test system

Quite small (~15M particles),
extremely heterogeneous density

Example test system

128, 256, … 4096 compute nodes with 1, 2, 4, 8, 16
ranks per node. Why does it stop scaling?

238
particles per
rank, ~3 ms

per MD
timestep

Example test system

Repeat force calculation x5 at each timestep: different
scaling characteristics! It’s not the load balancer!

119
particles per
rank, ~6 ms

per MD
timestep

Example test system

Not simply the same graph shifted up/down; so what’s
the problem? It’s not due to an MPI collective!

Example test system

Problem is MPI’s asynchronous point-to-point calls
(irecv, isend) – they can’t keep up! DMAPP again?

Summary

•  Designed & implemented a custom MD code for large-scale, very
dynamic CG simulations:
•  Very memory efficient
•  Load balances well
•  “Simple” & relatively friendly; < 5K lines of C++ with vanilla

MPI (except for a few lines of DMAPP RMA code)

•  Performance is very promising, despite unoptimised state

Thanks to …

•  NSF
•  Prof. Greg Voth & the group
•  Blue Waters staff, particularly:

•  Robert Brunner (long-suffering point-of-
contact)

•  Kalyana Chadalavada

•  jgrime@uchicago.edu - comments and
advice are very welcome!

